
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

21-08-2006
2. REPORT TYPE

Final Report
3. DATES COVERED (From – To)

1 October 2003 - 01-May-06

5a. CONTRACT NUMBER
FA8655-03-1-3064

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Intelligent Control Management of Autonomous Air Vehicles

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5d. TASK NUMBER

6. AUTHOR(S)

Professor Mario Innocenti

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Pisa
Via Diotisalvi 2
Pisa 56126
Italy

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
PSC 821 BOX 14
FPO 09421-0014

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

Grant 03-3064

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

There are many issues in the general area of cooperative control of unmanned vehicles; one of particular interest is cooperative path planning
and mission planning in a dynamic scenario with moving targets and moving obstacles. A dynamic scenario prevents usually the use of many
algorithms due to their inherently high computational cost. The report briefly overviews some existing procedures used to solve both path
planning and mission planning problems, and then proposes alternative algorithms which have a lower computational cost. In particular, we
propose a path-planning procedure based on the Constrained Delaunay Triangulation, and the geometric properties of the in-centers of
triangles. This procedure is not optimal from the analytical standpoint but it has several advantages for real-time applications because it allows
slower sampling times and produces safer paths. The proposed path planning method takes into account areas of the scenario that may be
more dangerous for the flight vehicle, by simply summing a term to the length of each sub-path depending of the dangerousness of the zone it
crosses. The report presents also a sub-optimal mission planning algorithm based on a dynamic clustering of the targets in order to have a
less myopic view of the entire scenario. The procedure is feasible in terms of total computational load, with respect to an optimal solution,
which is known to be NP-hard and not achievable in polynomial time.

15. SUBJECT TERMS
UAV, unmanned aerial vehicle, cooperative control, autonomous control

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
BARRETT A. FLAKE
 a. REPORT

UNCLAS
b. ABSTRACT

UNCLAS
c. THIS PAGE

UNCLAS

17. LIMITATION OF
ABSTRACT

UL

18, NUMBER
OF PAGES

29
 19b. TELEPHONE NUMBER (Include area code)

+44 (0)20 7514 4285

 Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

Intelligent Control Management of Autonomous Air Vehicles

Final Report

Grant: FA8655-03-1-3064

Submitted to:

EUROPEAN OFFICE OF AEROSPACE RESEARCH AND DEVELOPMENT

Submitted by:

Prof. Mario Innocenti

Date submitted:

 July 2006

University of Pisa
Department of Electrical Systems and Automation

Via Diotisalvi 2, 56126 Pisa Italy

Summary

There are many issues in the general area of cooperative control of unmanned vehicles; one of
particular interest is cooperative path planning and mission planning in a dynamic scenario
with moving targets and moving obstacles. A dynamic scenario prevents usually the use of
many algorithms due to their inherently high computational cost. The report briefly
overviews some existing procedures used to solve both path planning and mission planning
problems, and then proposes alternative algorithms which have a lower computational cost.
In particular, we propose a path-planning procedure based on the Constrained Delaunay
Triangulation, and the geometric properties of the in-centers of triangles. This procedure is
not optimal from the analytical standpoint but it has several advantages for real-time
applications because it allows slower sampling times and produces safer paths. The proposed
path planning method takes into account areas of the scenario that may be more dangerous
for the flight vehicle, by simply summing a term to the length of each sub-path depending of
the dangerousness of the zone it crosses. The report presents also a sub-optimal mission
planning algorithm based on a dynamic clustering of the targets in order to have a less
myopic view of the entire scenario. The procedure is feasible in terms of total computational
load, with respect to an optimal solution, which is known to be NP-hard and not achievable in
polynomial time.

The activity described in the summary was performed during the last year of the grant. The topics
studied within this year dealt primarily with path planning and mission planning issues in
cooperative control. The principal investigator of the project was Prof. Innocenti. In addition, Dr.
Lorenzo Pollini (assistant professor) and Mr. Andrea Bracci (Ph.D. student) participated to the
research work.

1. Introduction

In the past few years cooperative control of a team of unmanned vehicles (UAVs) has become an

area of increasing research interest. Teams of autonomous vehicles can be used for instance in

military applications, search and rescue missions, fire protection, and other cases in which human

presence can be endangered. Two very challenging problems encountered in cooperative control

are the path planning and the mission planning for a team of UAVs in a dynamic scenario with

moving and unknown targets and obstacles. Another important issue is the control of autonomous

aerial vehicles in order to keep a predefined formation shape; this is known as the formation-flight

problem.

The objective of the present report is to discuss and propose some strategies of cooperative

control of UAV teams. The main idea is that cooperation can lead to better performance than non-

cooperating vehicles; due to the fact that different vehicles can share different information about the

environment depending on their own position and capabilities, and so a much larger view of the

entire scenario can be obtained combining all this partial knowledge.

There are mainly two different coordination strategies: centralized and decentralized

cooperative control. The former requires a central unit with great computational capabilities, which

is able to plan the entire mission and then transmit the results to every vehicle. The latter requires

many computational units (at the most one for each vehicle) with less computational capabilities,

but with the added complication of vehicle-to-vehicle communications.

The report is organized as follows: first some results in the context of both path-planning

and mission-planning will be reviewed, showing advantages and disadvantages of the different

approaches. Then a new approach will be presented, dealing with some problems we encounter in

cooperative control. More specifically, we introduce a fast and safer path-planning procedure that

takes care of the presence of dangerous paths. This procedure is based on a dynamic version of the

Constrained Delaunay Triangulation (DCDT), and the geometric properties of the in-centers of

adjacent triangles. The resulting path is suboptimal but has the advantage of a higher safety for

real-time applications, especially in the case of very close obstacles, yielding a larger distance from

the obstacles. The danger of certain zones is quantified by introducing an additional cost to every

path section depending on the “risks” that a vehicle encounters traveling along that section. It will

be shown that the additional cost does not affect significantly the overall computational load of the

path-planning procedure, and can be used for online computation as well.

The proposed mission planning algorithm uses a clustering approach in order to obtain a less

myopic and more scalable assignment procedure. The algorithm is based on the assumption that

close targets are likely to be visited by the same vehicle, thus they can be grouped into the same

cluster. Once the clusters are determined, each vehicle is initially assigned to a specific cluster.

Two problems were encountered using the previous clustering approach; the first was the effect of

the obstacles, and the second was the choice of the right number of clusters. The first problem was

solved by using some pseudo-coordinates (the cost of the path linking a target to the others). The

second was solved with a dynamic procedure capable of finding the adequate number of clusters

depending on a design parameter related to the maximum size of each cluster.

2. Path Planning in a dynamic Environment

Path planning in a dynamic environment is very critical in the context of cooperative control

due to the presence of moving obstacles and moving targets, among other factors. In the present

context, the term “obstacles” is used to represent environmental entities such as mountains and

buildings, as well as other elements of the scenario like no-fly zones with a potentially high level of

dangerousness for the vehicles (military defenses, radar monitored areas, clouds of toxic material,

zones with highly varying winds, temperature, atmospheric pressure, etc.).

In the case of no-fly zones, in particular, we may encounter moving obstacles, which prevent the

use of pre-computed flight paths, and make the entire path planning process more complex. In the

general case, in fact, such obstacles move/appear in an unknown and unpredictable fashion, and the

path planning strategy must react preventing possible dangerous situations and re-creating a new

feasible path. The concurrent presence of targets (in addition to obstacles) makes the path planning

problem even more challenging, whether they are static, dynamic, and with dynamics known with

different levels of accuracy.

The dynamicity of the scenario obviously makes off-line path planning inadequate, and fast

path planning procedures are required to obtain better performance. In this section we present many

different approaches to deal with a dynamic environment focusing on the advantages and the

disadvantages of each. We always refer to a bi-dimensional scenario, and we consider that real

obstacles are polygonal and enlarged by a factor such that we can neglect vehicles dimensions that,

in turn, can be considered as point mass elements. Moreover we assume that targets be represented

by points that must be visited.

2.1 Visibility Graph Procedure

This procedure is optimal, and it is based on a graph search of the minimum-cost path between two

nodes. In the context of cooperative control the nodes represent typically the vehicles, the targets,

and the vertices of the obstacles. The procedure can be summarized with the following three steps:

a. Consider the points defined by vehicles and targets positions in addition to the vertices of

the obstacles.

b. Create the Visibility Graph (VG) linking each node with every other node and neglect non-

admissible edges (edges intersecting at least one obstacle). The cost of each edge is equal to

the length of the path linking the two points.

c. Denote with IDstart and IDend the starting (vehicle), and the ending (target) node respectively

and find the shortest path between IDstart and IDend using the Dijkstra’s algorithm.

The sequence resulting from Dijkstra’s algorithm is the shortest path from a vehicle to a target and

therefore we must run the algorithm for every pair vehicle-target. We point out that the VG must be

found only once.

Now we look at the total computational cost of the entire procedure. In the following we

denote with n the total number of nodes of VG which is given by the vertices of the obstacles and

the two points relative to the vehicle and the target (supposing that there is only one vehicle and one

target).

Construction of the visibility-graph.

To construct the visibility graph we need:

• Total number of edges (including non admissible edges) ()
2

1−
=

nnN E

• Total number of obstacle-edges 2−= nNOE

• For every edge we must verify if it is admissible or not. This can be done verifying if the

edge intersect or not an obstacle edge. The total cost of this operation is

() ()[]()
2

221 −−−−
==

nnnnNNC OEEA

• The total number of admissible edge is identified with NAE and it depends on the scenario

configuration.

Optimal path calculation.

The computation of the optimal path is a direct consequence of the value of the minimum cost:

• Once the visibility graph is found, the cost of the Dijkstra’s algorithm with a Fibonacci heap

is ()AEDA NnnOC += log

• Summing up all the costs, the total complexity of the procedure is found to be O(n3).

We point out that the bottleneck of the entire procedure is the construction of the visibility graph.

The advantage of this procedure is of course that it is able to produce the optimal path for every

vehicle-target pair, but it becomes unfeasible for on-line implementation because of its high

computational cost.

2.2 Fixed Tessellation Procedures

In order to achieve a faster path-planning procedure we can use a fixed tessellation of the scenario.

The main idea is to perform the major part of the computation off-line, and use it for on-line

implementation. We present different approaches based on a fixed tessellation and we will

unfortunately conclude that we have no great advantages in using such fixed tessellations.

General properties

We first state some important results of path planning in tessellations. In the remainder of

this sub-section we always consider the problem of finding the shortest path between two points in

the plane, in presence of static obstacles. We use the following notation:

O
VGL - The optimal path between the two points on the visibility graph.

NO
VGL - A generic non-optimal path between the two points on the visibility graph.

O
TL - The path on the tessellation corresponding to O

VGL

NO
TL - The path on the tessellation corresponding to NO

VGL

We have assumed implicitly that if O
TL and NO

TL are reduced (with a path reduction procedure) we

obtain O
VGL and NO

VGL respectively. Finally, we use the operator ⋅ to indicate the total length of a

path. The main relations between the paths presented above are the following:

NO
VG

O
VG LL <

O
T

O
VG LL ≤

NO
T

NO
VG LL ≤

Nothing can be said about the relationship between O
TL and NO

TL . T his is the main problem and it

needs a more accurate study. The problem is due to the fact that we determine the path along the

edges of the tessellation and then we reduce it finding the corresponding path on the visibility

graph. Obviously we are searching for the optimal path on the visibility graph; so we hope that in

every case we’ll have O
TL < NO

TL so that we could always recover the optimal path. Unfortunately

this condition is not always verified, and there can be cases in which we select a path that, once

reduced, is not the optimal one. We can state the following proposition based on the above which

concepts:

Proposition 2.2.1 – Given O
VGL , NO

VGL , O
TL , NO

TL and a tessellation which produces a maximum

relative error e > 0; and given () O
VG

NO
VG LeL +< 1 , then if we choose the path along the tessellation

we are not sure that this corresponds to the optimal path on the visibility graph. In other terms there

are not warranties that O
TL < NO

TL .

Proof: From the hypothesis we have the following relations:

NO
VG

O
VG LL <

() O
VG

O
T LeL +≤ 1

() NO
VG

NO
T LeL +≤ 1

Then there can be cases in which we can find an e1 such that 0 < e1 < e and () NO
VG

NO
T LeL 11+= and

O
TL > NO

TL . ■

We can verify the previous proposition in a simple case: the optimal path on the visibility graph is

in the worst condition (the relative error is equal to e) and the non-optimal path on the visibility

graph is in the best condition, which means that this path is completely covered by some edges of

the tessellation (e1 = 0). Obviously this case verifies the hypothesis of Proposition 2.1 and so this is

verified. Conversely we also have the following result:

Proposition 2.2.2 - Given O
VGL , NO

VGL , O
TL , NO

TL and a tessellation which produces a maximum

relative error e > 0; and given () O
VG

NO
VG LeL +> 1 for every non-optimal path, then the following

relation holds:

O
TL < NO

TL

Proof: From the hypothesis we have the following relations:

() NO
T

NO
VG

O
VG

O
T LLLeL ≤<+≤ 1

which proves the proposition. ■

The last proposition says that if the relative error between every non-optimal path to the optimal

path on the visibility graph is greater than e, then, moving on the tessellation we can always recover

the optimal path. From the two previous propositions it is clear that we must find a tessellation that

produces the least possible maximum relative error. Next we create a tessellation that assures that

the relative error is limited by a known value.

 Through a numerical procedure it has been found that the optimal shape of the polygons of a

fixed tessellation is the equilateral triangle. The choice of a triangle is due to the fact that this is a

convex polygon and every vertex is directly linked to the others, and there are not neglected internal

paths. Moreover a tessellation mode of equilateral triangles allows the minimum value of the

maximum relative error we commit by moving on the tessellation instead of a straight line. This

error is about 15.5%. By allowing some “cuts” in the paths we can reduce this value to about 1.5%

which is an admissible one.

The presence of the obstacles affects the regularity of the tessellation and the maximum

error we obtain. There are substantially three ways to deal with obstacles:

a. Every obstacle-edge is subdivided in many parts with a given number of points that are

forced to be part of the tessellation.

b. The non admissible triangles (which are triangles completely or partially intersecting an

obstacle) are neglected and the remaining triangles form the resulting tessellation.

c. Insert the obstacle-vertices as node of the tessellation linking each of them to the vertices of

the triangle containing it.

We next consider advantages and disadvantages of the three possibilities:

a. The resulting tessellation is refined in proximity of the obstacles but the triangles are not

identical, so there are not warranties on the maximum relative error because it can only be

found in the case of regular tessellation.

b. The resulting triangles are identical and if it is necessary the size of some triangles can be

reduced in order to have a more precise bounding of the obstacles. The maximum relative

error is bounded by the maximum relative error of the shape of the triangles.

c. The resulting triangles are all equilateral and the nodes of the visibility graph are all part of

the tessellation. So this method allows larger tessellations and in some special cases it is

capable of recovering directly the visibility graph-path without any reduction.

In all the three methods we find the path between two points in the scenario by recognizing

which triangles enclose the initial and the final point and we run Dijkstra’s algorithm between every

vertex of the first triangle to every vertex of the final one. Then we add to every path the distance

between the initial and the final points to the vertices of their respective triangle, and select the

shortest path. The three methods require the initial tessellation, so we must grid the scenario with

many points corresponding to the vertices of the equilateral triangles.

The procedure for creating a tessellation is as follows:

• Indicating with NB and NH the number of points in the base and in the height of the rectangle

enclosing the scenario, the total number of triangles is ()()132 −−= HBT NNN

• The total number of edges is approximately HBET NNN 3= .

• Once the edges have been found, we must verify which of them are entirely or partially

inside an obstacle. So all the NET edges must be verified with the NOE edges. Hence this

procedure has a cost () ()OEHBOEETEV NNNONNOC == .

• We note that the total cost of the verification procedure can be reduced to

()()OEHBEV NNNOC 32 += by considering the intersections of the edges of the obstacles

with the “super-edges” obtained by linking the aligned edges of the regular tessellation. By

this way we can reduce the number of edges to be verified from NBNH to 2NB+3NH.

Now let us evaluate the total computational cost of the three methods:

a. The total cost depends strictly on the number of points we select on every edge. Suppose

that we add NAP points on every edge, the total number of nodes is OEAPHB NNNNN +=1 .

The cost of Dijkstra’s algorithm is ()111 log9 ENNO + where E1 is the total number of

admissible edges.

b. In this case the total cost depends on the desired refinement degree: if we use a mean

refinement factor of two (that is: every triangle is divided into four triangles) we obtain a

total number of nodes equal to HB NNN 42 = yielding a total number of edges

THBE NNNN 362 += . It follows that the total cost of Dijkstra’s procedure is

()222 log9 ENNO + where E2 is the number of admissible edges.

c. Using this procedure we add OENn =− 2 vertices to the tessellation and a maximum of

()23 −n edges to the resulting graph. Hence the total number of nodes is

OEHB NNNN +=3 and as in the previous two cases the cost is ()333 log9 ENNO + .

Summing up all the costs we obtain:

()111 log9 ENNOCC EVa ++=

()222 log9 ENNOCC EVb ++=

()333 log9 ENNOCC EVc ++=

We focus on the fact that, independently from the refinement factor of the first two procedures, the

following relationships hold:

23

13

NN
NN

≤
≤

Hence we can conclude that the third procedure is cheaper than the others. In order to have

advantages (in terms of computational cost) in using procedure c, compared to the optimal

procedure, we must have () 3, <= knOC k
c , so we must find ad adequate gridding of the scenario.

In the worst case we can assume that ETNE =3 . If we choose nNN HB == (which is a reasonable

choice compatible with the scenario) we obtain:

() () ()nnOnnnOnOCc log29log292 2222 =++=

then if nn <log18 this procedure is cheaper than the optimal one. Solving nn <log18 for n

positive integer we obtain n > 16.

To improve on the previous result, we can link the initial point and the final point to the

vertices of the triangles enclosing them respectively and then run Dijkstra’s algorithm once. The

total cost becomes ()nnOCc log2 2= . Numerical simulations have shown that for n large the VG

procedure is slower than the tessellation procedure, but for small n the former is faster because in

the latter there are many terms depending on n2. Since the computational cost of the VG procedure

and the non-optimal one are very similar we will now consider alternate tessellation methods.

2.3 Euclidean Shortest Path

In 1999 Hershberger and Suri [1] found an optimal solution of the Euclidean Shortest Path in the

plane with many obstacles with complexity O(nlogn) in time where n is the number of polygon

vertices. Their algorithm is based on the so-called continuous Dijkstra’s algorithm and uses the

wave front propagation method. We refer [1] for the details of the algorithm.

2.4 CDT-based Path Planning

Although the result of Hershberger and Suri is very good in view of its low computational cost, we

point out that if a vehicle follows an optimal path it is not sure that it will not collide with any

obstacles. This is due to the fact that the optimal trajectories pass through obstacle edges and in

real-time applications there will be always a selected sampling time, and so in the inter-sampling

time there is the possibility of collision with a moving obstacle. To take care of this, non optimal

paths must be considered as well.

2.4.1 Kallmann Procedure

In [2] Kallmann proposed a fully dynamic Constrained Delaunay Triangulation (CDT), which can

be very effective in a dynamic environment because it only changes the moving edges (which are

the obstacles edges) yielding a lower computational cost. The procedure proposed by Kallmann can

be summarized in the following steps:

a. Perform an initial CDT, which can be run in O(nlogn) time (see [3]) and keep track of the

constrained edges with the data structure defined in [2].

b. At every time step modify the actual CDT in order to consider moving obstacles (which

means: moving constrained edges).

c. Define an initial point (vehicle) and a final point (target). Find the shortest adjacency chain

between the two triangles enclosing the two points on the CDT without crossing any

constrained edge. This procedure can be run in O(nlogn) using a graph search and an

efficient data structure [2].

d. Once the chain has been found, find the shortest path between the two points in the chain.

This procedure can be run in O(n) using a funnel algorithm [4].

As described in [2] the resulting path can be non-optimal because the funnel algorithm is ran in a

possibly non-optimal chain. Though non-optimal in global sense, the resulting path is still too close

to the obstacles because it is optimal in the considered chain. In the next section we present a

modification to the present procedure in order to obtain a safer path among the obstacles.

2.4.2 Modified CDT Procedure

The main idea is based on the properties of the incenters of two adjacent triangles. Let us consider

two adjacent triangles and their respective incenters (red points in the next figure). Since the

incenter is the intersection point of the bisectors of the angles of the triangle and since every angle

is smaller than 180° we are sure that the line linking the two incenters crosses the adjacent edge of

two triangles. Consider the following figure:

Figure 1: Computation of Incenters

The four angles α, β, γ, δ are smaller than 180° each; hence the angles ξ, ψ are convex. This

implies that the resulting quadrilateral is convex and hence the line linking the two incenters crosses

AB.

The above properties are very useful in finding an obstacle-free path. Once we have defined the

triangles using the CDT we know a set of points, which defines an admissible path. The procedure

we propose uses the first three steps of Kallmann algorithm, while the last step is modified as

follows:

Once the chain has been found, simply link the incenters of the adjacent triangles in order to obtain

an admissible path and link the initial and the final point to their respective incenter.

The resulting path is surely non optimal but it has many advantages since it can be found in a

smaller time than the Kallmann procedure because there is no need of the funnel algorithm;

moreover it is more distant from the obstacles and therefore a safer path. This last property will be

more clear with the following example.

Example 1 – The next figure shows a scenario with two obstacles, one vehicle (blue “x”) and one

target (green “o”). The optimal path between the two points is the green path while the red line is

the union of the segments linking the incenters of the adjacent triangles.

Figure 2: Path Computation for Example 1

The black path is the resulting path using a reduction procedure (see later). We note that the non-

optimal path is far away from the optimal one (in this case the non-optimal path is about 27%

greater than the optimal one) but it is worth to note that between the two obstacles the red path

reveals safer than the optimal path because it is more distant from the edges of the obstacles.

We focus on the fact that the method of the incenters can be expanded noting that given a generic

constrained triangulation of the plane and two points enclosed in two adjacent triangles, if the

segment linking them crosses the adjacent edges, that segment is surely obstacle-free. This property

is easily proven noting that the triangles are always convex polygons, and the segment can be

divided in two inside one triangle each and then the resulting segment is completely inside the

union of the two triangles. This implies that it does not cross any obstacle.

This last property can be used to reduce a path. Consider a path passing through many points inside

the triangles of the CDT each, and try to delete one point (except the first and the last) in order to

obtain a shorter path. If the new segment crosses all the adjacent edges of the triangles then it is an

admissible path. More precisely:

a. Start from the first point of the obtained path and try to link directly to the fourth point of

the path. If this segment intersects the two adjacent edges of the three triangles then the

segment is surely admissible, otherwise it is non-admissible.

b. Indicate with Pi a generic node of the path, with Ti the triangle enclosing Pi, with Si the

adjacent edge between Ti and Ti+1.

c. Try to link Pi with Pi+3. If this segment intersects Si, Si+1, Si+2, then this is an admissible one

and we can delete Pi+1 and Pi+2 from the path. Otherwise try to link Pi with Pi+2, if this

segment intersects Si and Si+1 this is an admissible one and we can delete Pi+1 from the path,

otherwise it is a non-admissible segment.

d. Repeat step c until all nodes are visited.

Using this reduction procedure, the resulting paths are straighter and shorter, though it is necessary

to run a simulation whose worst-case computational cost is O(v) where v is the number of nodes in

the initial path. We point out that both Kallmann procedure and our procedure are scalable with the

number of vehicles and targets because the CDT depends on the obstacles only while the vehicles

and the targets are considered in a second moment.

2.5 Concluding Remarks on Path-Planning

We have analysed path-planning procedures based on visibility graph, fixed tessellations, Euclidean

path-planning and CDT-based path planning. Another common approach is to use mixed integer

linear programming algorithms (MILP); this procedure is described in a later section, because it can

be used to solve mission planning problems as well.

We have shown that the visibility graph approach leads to optimal trajectories but its computational

cost is too large for real-time implementation. Fixed tessellations-based path-planning has a smaller

computational time, especially for large scenario but it is still too large in the view of real-time

applications. Euclidean shortest path [2] is a fast procedure to find the optimal path between two

points in the plane in presence of obstacles but it has the disadvantage that optimal paths are not

necessarily safe in the view of real-time applications because they may be too near the obstacles (in

theory they lie on the edges of the obstacles as much as necessary and possible). Kallmann

procedure is based on the dynamic CDT and it has a low computational cost. However it has the

same problem of the Euclidean shortest path because, though non optimal, the resulting path is still

lying on the edges of the obstacles.

Our proposed method is a modification of the Kallmann procedure, and although it produces a non-

optimal path, has a low computational cost and it allows safer trajectories especially when obstacles

are close each other.

3. Dangerous Zones

In this section we deal with the presence of dangerous zones in the scenario, and how their presence

may affect path planning procedures. These zones are in principle flyable but they may include a

variety of risks for safe flight (environmental, adversary, etc.). We can include these zones by

modifying the path cost by a factor depending on the probability of unsafe flight. To this end we

refer to the search of the shortest path on a graph. We identify with Eij the edge linking the ith and

the jth nodes. Next we introduce the quantities Pij for every edge such that:

10 ≤≤ ijP

where Pij = 0 means that the path is safe while Pij = 1 means that if a vehicle travels along Eij then it

will be damaged.

The main question is the following: “If an UAV travels along a path what is the total probability of

being damaged ?”. Obviously the answer to this question depends on the dangerousness of each

edge of the path. Let us denote with PP the probability of being damaged on the entire path; then

we have the following relationship:

()∏
=

−−=
L

k
kP PP

1

11

where L is the number of edges of the path and Pk is the probability of being damaged of the kth

edge of the path. It is trivial to note that, in order to obtain PP, we can’t directly sum all the Pk so

we need another way to establish the total generalized length (total cost, WP) of the path.

The first idea to deal with PP is to consider it in the total cost in the following way:

PMAX

L

k
kP PccW += ∑

=1

where ck is the cost of the kth edge and cMAX is a constant that must be tuned. This method

represents the best way to consider PP because it is exact, but it has the disadvantage that it can’t be

run with the on-line algorithms previously introduced because we take care of the dangerousness

only after the path-planning procedure is done (in fact we can compute the total effects of the Pk

only when we have the entire sequence of visits). Our goal is instead to deal with Pk during the

path-planning procedure and so we must find another way to include PP.

Consider then a modified cost kĉ of every edge as follows:

()kMAXkk Pfccc +=ˆ

where f is a generic function of Pk. If a path contains only two edges E1, E2 then the total cost WP

will be:

() ()[] MAXP cPfPfccccW 212121 ˆˆ +++=+=

The goal is to find f such that the term into square brackets resembles PP. Choose:

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
k

k P
aPf

1
log

(where a is a parameter that can be tuned) which produces:

()()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

++=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

++=
21

2

21
21

21 11
log

1
log

1
log

PP
acccc

P
a

P
accW MAXMAXP

we obtain:

() ()()()[]2121 11loglog2 PPacccW MAXP −−−++=

Obviously log(a) is constant, and the second term in the square brackets is non-positive. We point

out that, as we expected, if P1 = 0, P2 = 0 and a = 1 the modifying term is zero, which is the case of

the non-dangerous paths. Moreover if an edge is dangerous (Pk 1) the modifying term is very

effective in penalizing the respective edge.

Using the previous form for f we can update the procedure of finding the optimal assignment by

simply summing ()kMAX Pfc to the cost of every edge. If a path contains L edges the total cost is

given by the following expression:

() () () ()[]PMAX

L

k
k

L

k
kMAX

L

k
k

L

k
kP PaLccPaLcccW −−+=⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+== ∑∏∑∑

====

1loglog1loglogˆ
1111

It is easy to see that if PP 1 then WP will be very large (depending on the value of cMAX), while if

PP 0 then WP will be given by the sum of the length of the edges (with a = 1).

Using this form of f allows we can include the dangerousness of an edge during the path-planning

procedure. Moreover the total dangerousness of the path is directly calculated step by step and so

there is no need to come back after the path-planning procedure in order to evaluate PP.

Finally, we briefly show the effect of the parameter a. If a = 1 it does not affect the total cost. Only

if a ≠ 1, WP is affected. We can use different values of a in the first step of the assignment

procedure when we search the optimal shortest path between every vehicle to every target. We can

set different values of a for the vehicles in order to deal with the differences between the vehicles

themselves. For instance if a vehicle is more performing than the others then it may be favoured to

be chosen to perform a task, so we can set a lower value of a for it. The operation of varying a at

the first step of the assignment procedure is not computationally expensive because we only need to

sum the current value of log(a) to the cost of every edge. As an example, if a target T1 was to be

attacked and the vehicle U has not weapons, we can set a very large value of a when we search the

optimal path between U and T. A different value of a for the same UAV can be set if a target T2

requires a visit and not an attack.

We have proposed a procedure to deal with the dangerousness of some zones of the scenario. The

exact effects of the probabilities of a vehicle being damaged along a specific segment of a path can

be considered only at the end of the path-planning procedure and so it is unfeasible. We have

therefore modified the cost of every edge with a term depending on the probability of damage in

such a way that we can directly sum the modified costs in order to obtain the total cost of the path.

This modification allows using one of the procedures shown before and, in the particular case of

absence of dangerous zones, we recover the same paths of the unmodified costs. Moreover, we

have an additional degree of freedom for dealing with the difference between vehicles.

4. Mission Planning

In this section we concentrate on the mission planning problem for a team of n UAVs. Many

different situations may arise in this context: there can be targets that must be visited only, targets

that, once reached, require a particular task such as mapping, identification, attack, verification, and

so on. Moreover, some of the areas flown may have different levels of danger for the vehicle.

Finally, we may have to consider vehicles with different characteristics, sensor suites, and

capabilities.

4.1 Optimal Assignment

The objective of this section is to find a strategy of task assignment such that a team-cost is

minimized. It is well known that finding the optimal solution to the assignment problem is a very

hard problem in a general sense, because it involves the exact solution of the Travelling Salesman

Problem (TSP), which is known to be NP-hard. Moreover the simple TSP involves one agent that

must visit m cities, while in our case there are n agents, who must visit m cities minimizing a team-

cost, hence the problem is much more complex. In order to find the optimal solution in the general

case one must enumerate all the possible assignments and choose the cheapest one. Unfortunately

the total number N of assignments is given by the following:

()
!

!1
n
mnN −+

=

and then it is unfeasible even for small values of n and m.

Recently Rasmussen et al. [5] presented a way to compare heuristic solutions to the problem of task

assignment. Obviously, in the case of very small values of n and m these strategies can be

compared with the optimal one but for large values of n and m, heuristic procedures must be

compared each other without even knowing the optimal solution.

4.2 Hungarian Algorithm

The Hungarian algorithm (Munkres’ algorithm) is a fast procedure for determining a sub-optimal

assignment. Define the matrix C of size n by m where the (i, j) entry represents the cost that the i-th

vehicle have to go to the j-th target. The Hungarian algorithm finds the assignment that minimizes

the sum of the cost of all the vehicles. More precisely it minimizes the following cost index

∑∑
= =

=
n

i

m

j
jiji pcJ

1 1
,,

where pij are the entries of a permutation matrix. The Hungarian algorithm works correctly for

square matrices. In [6] we can find some modifications to the numerical procedure, to account for

the case of non-square matrices. The solution is sub-optimal in the sense that does not take care of

the fact that after a vehicle has visited his target, it can be reassigned to another target and hence

there is the possibility that a target receives multiple assignments for the same task. This may lead

to unwanted behavior because a vehicle could move to a target and then to another one without

visiting neither of them. This is obviously not desirable.

The main reason for the above sub-optimality of the Hungarian algorithm is that it performs a one-

step optimization that is the obtained solution is optimal only if a vehicle stops its mission after

completing the first task. In addition, if there are more tasks than vehicles, fictitious vehicles must

be added in order to correctly run the algorithm.

4.3 MILP Approach

In this sub-section we briefly review a MILP (Mixed Integer Linear Programming) approach to the

solution of both path-planning and mission planning. This method has the property of producing

the optimal solution of both problems taking care of the vehicles’ capabilities at the same time but,

we will see, has the great disadvantages of a very large computational cost.

The path-planning and mission planning problem can be formulated as follow. Define a cost index

JT which must be minimized of the form

()∑ ∑ ∑
=

−

=

−

=

⎟
⎠

⎞
⎜
⎝

⎛
++=

m

k

N

i

N

i
kNkikkikT sfursqJ

1

1

1

1

0
,,

'
,

'

where p is the number of vehicles, si,k are the state-space variables of the vehicles, ui,k are the input

variables, qk rk are two cost vectors, f(sN,k) are functions of the final states, N is the number of time

steps. Define constraints in the following form:

bAx ≤

where the vector x contains all the si,k and ui,k. In order to take care of obstacle avoidance, collision

avoidance, and target assignment many binary variables must be added, which enlarge the size of x.

The resulting optimization problem involves both real and binary variables, which can be solved

using one of the many available solvers. The solution is the optimal to both the path planning and

mission planning problems. This result stems from the fact that every problem we may have (such

as shortest obstacle-free path, optimal assignment, minimal completion time, etc…) can be

formulated as MILP. We note that, in order to run the MILP procedure we must define a sample

time and the time horizon over which the optimization is run. Hence decreasing the sample time or

increasing the time horizon leads to larger systems to be solved. For scenarios where there are

many UAVs and many targets, the entire procedure becomes very computationally expensive.

Moreover the unknown dynamics of the scenario (discussed in previous sections) combined with

the high computational cost prevent the MILP to be applied in real-time applications. More details

on MILP procedure can be found in [7].

4.4 Clustering approach

The exhaustive search of optimal assignment and the MILP approach are capable of finding the best

solution to the problem in the view of minimization of a particular index, but these are both too

computationally expensive and non-scalable. The Hungarian algorithm has instead a low

computational cost, but the resulting assignment is only local optimal and global performance can

be poor. In this section we present a new methodology for dealing with many vehicles and many

targets in order to obtain a fast and less myopic assignment.

The main idea is based on the assumption that close targets are likely to be visited only by one

vehicle rather than more vehicles. This assumption allows the introduction of targets clustering in

order to obtain a lower order system, and to take advantage of the proximity of some targets. We

initially deal with obstacle-free scenarios, and a single task (target visit), to show the capabilities of

the proposed procedure. Consider the following figure where the blue circles are the targets:

Figure 3: Initial Scenario for Clustering Approach Method

From the figure, many targets are close and then if a vehicle visits one of them it will probably visit

the other. Hence, in this example, we can define four clusters which are marked as red stars.

The case of scenarios with obstacles is more complex because “close” targets can be very distant in

terms of flyable trajectory. Consider the following figure:

Figure 4: Initial Scenario with Obstacles for Clustering Approach Method

It is clear that the targets we have indicated with the two arrows are very near (the ideal straight line

linking them is very short) but, due to the presence of the obstacles, these can not be clustered and

perhaps a single vehicle is not sufficient.

The procedure to find clusters of targets uses the distances between the targets as pseudo-

coordinates in a m-dimensional space. Initially we find the shortest path (or an admissible one, as

discussed before) linking every target to each other. In doing this we run the path-planning

procedure only m*(m-1)/2 times because of the symmetry in going from target i to target j and vice

versa. Once the paths are found we build the cost matrix (which is symmetric) with each path

length, and we use its columns as the pseudo-coordinates of the targets.

After defining a desired number of clusters k we run a clustering algorithm (k-means or fuzzy c-

means algorithm), which groups the targets in k clusters. In figure 4 the clusters were obtained using

k = 4. The targets belonging to the same cluster are represented with the same symbol and the

entire cluster is enclosed into an ellipse. It is worth noting that the clustering algorithm recognized

correctly that the two targets we indicated in the figure with two arrows are far away in the scenario

and they were assigned to different clusters.

The assignment is devised by finding the mean distance between every vehicle to the targets of

every cluster and then by building a new cost matrix on which we can run an assignment algorithm

such as the Hungarian technique. Once a vehicle has been assigned to a cluster it must optimise its

path. This optimization step is the standard TSP, which can be solved approximately by heuristic

procedures.

An open question to the approach suggested above is “Which is the right number k?”. We must find

a way to rigorously determine the optimal value of k. This is needed because there must be a

compromise between a choice of too many clusters (with too few vehicles), and the opposite

situation. The problem is well known in literature ([1], [8]) and we can find many approaches to

solve it.

In the view of dynamic environment we must take care of the mobility of both targets and obstacles

and so we need a dynamic procedure. We propose the following clustering procedure.

a. Fix a real positive r and choose a norm.

b. Start with only one cluster with centroid placed at the center of the m points.

c. Find the farthest point (in the sense of the chosen norm) named Pf from the center of each

cluster and check if it is farther than r. If it is not then stop. Else go to step d.

d. Add a new cluster centred in Pf and run the k-means algorithm using as initial guess the

available centres. Go to step c.

It is clear that the value of r affects very much the clustering result: choosing a large value will

result in a larger amount of targets in every cluster. Setting a small value, results in a smaller

number of targets in every cluster. If r = 0 there are as much clusters as targets since every cluster

centre coincides with a target. The parameter r can be seen as a proximity factor and it can be tuned

in order to obtain different clustering. The value of r may depend on the vehicles velocity.

The procedure we have presented is similar to the one described in [9], where the so-called

dispersion measure is replaced by a norm. Moreover in our approach there is no “optimal” number

of clusters, but the final number depends on the value of r.

In order to avoid sudden changes in clustering after a target has been visited, we weight each target

with a value wi such that []10∈iw ; wi must smoothly decrease from one to zero whenever the i-th

target has been visited. In this way, the center of the respective cluster smoothly moves and

churning effects can be avoided. We point out that by using the pseudo-coordinates we can deal

with the effects of dangerous zones as well. This is due to the fact that the length of the shortest

path we calculate with a path-planning algorithm becomes a more general path-cost summing up the

effects of the dangerousness of certain zones.

5. Conclusions

Path planning and mission planning issues in cooperative control have been studied. Several known

approaches for solving those problems were presented focusing on the advantages and the

disadvantages of each. In the context of path planning we have shown that optimal algorithms

produce paths that are not much applicable to real-time situations because the trajectories are too

near to the obstacles. We proposed a dynamic procedure partially following the one proposed by

Kallmann and based on the DCDT. Our procedure has a low computational cost and produces safer

paths in terms of danger to the integrity of the vehicles. Dangerous zones are taken into account by

simply summing a term depending on the risk encountered in flying through a path. In the context

of mission planning we proposed a dynamic clustering approach in order to obtain a less myopic

and more scalable assignment procedure. Using this procedure the UAVs are assigned to a cluster

instead of a single target and then each vehicle optimizes its path by approximately solving a TSP.

6. References

[1] J. Hershberger, S. Suri. An Optimal Algorithm For Euclidean Shortest Paths in the Plane. In
SIAM Journal on Computing vol. 28, No. 6, pp. 2215-2256, 1999.
[2] M. Kallmann. Path Planning in Triangulations. In Proceedings of the Workshop on Reasoning,
Representation, and Learning in Computer Games, International Joint Conference on Artificial
Intelligence, Edinburgh, Scotland, July 31, 2005, 49-54.
[3] T. Schouwenaars, B. De Moor, E. Feron, J. How. Mixed Integer programming For Multi-
Vehicle Path Planning. European Control Conference, Porto, Portugal, September 2001, pp. 2603-
2608.
[4] B. Chazelle. A Theorem on Polygon Cutting with Applications. In Proceedings of the 23rd
IEEE Symposium on Foundations of Computer Science, 339-349, 1892.
[5] S. Rasmussen, P. Chandler, J. Mitchell, C. Schumacher, A. Sparks. Optimal vs Heuristic
Assignment of Cooperative Autonomous Unmanned Air Vehicles. In Proceedings of AIAA
Guidance Navigation and Control Conference and Exhibit. 11-14 August 2003, Austin, Texas.
[6] D. Turra, L. Pollini, M. Innocenti. Fast Unmanned Vehicles Task Allocation With Moving
Targets. In Proceedings of the 43rd IEEE Conference on Decision and Control, December 14-17,
2004 Atlantis, Paradise Island, Bahamas.
[7] T. Schouwenaars, B. De Moor, E. Feron, J. How. Mixed Integer programming For Multi-
Vehicle Path Planning. European Control Conference, Porto, Portugal, September 2001, pp. 2603-
2608.
[8] W. Lu, I. Traore. Determining the Optimal Number of Clusters Using a New Evolutionary
Algorithm. In Proceedings of the 17th IEEE International Conference on Tools with Artificial
Intelligence
[9] C. Chinrungrueng, C. H. Séquin. Optimal Adaptive k-Means Algorithm with Dynamic
Adjustment of Learning Rate. In IEEE Transactions on Neural Networks, Vol. 6, No 1, January
1995.

	SF298.pdf
	Final Report Year 0405.pdf

